Question 324684
{{{x^2-5x+6=(x-2)(x-3)}}}
{{{(2x)/(x^2-5x+6)+4/(x-2)=(2x)/((x-2)(x-3))+4/(x-2)}}}
Use the common denominator, {{{(x-2)(x-3)}}}
{{{(2x)/(x^2-5x+6)+4/(x-2)=(2x)/((x-2)(x-3))+(4(x-3))/((x-2)(x-3))}}}
{{{(2x)/(x^2-5x+6)+4/(x-2)=(2x+4(x-3))/((x-2)(x-3))}}}
{{{(2x)/(x^2-5x+6)+4/(x-2)=(2x+4x-12))/((x-2)(x-3))}}}
{{{(2x)/(x^2-5x+6)+4/(x-2)=(6x-12))/((x-2)(x-3))}}}
{{{(2x)/(x^2-5x+6)+4/(x-2)=(6(x-2))/((x-2)(x-3))}}}
{{{(2x)/(x^2-5x+6)+4/(x-2)=6/(x-3)}}}