Question 323524
Assume the problem is:
{{{((2s^(-1)*t^(3 ))^(-3))/((6s^2*t^(-4)))}}}
In the numerator, multiply the exponents inside the brackets by -3
{{{((2^-3*s^3*t^(-9)))/((6s^2*t^(-4)))}}}
Reciprocal of 2^-3 gets rid of the negative exponents
{{{((s^3*t^(-9)))/((2^3*6s^2*t^(-4)))}}}
:
{{{((s^3*t^(-9)))/((8*6s^2*t^(-4)))}}}
:
{{{((s^3*t^(-9)))/((48s^2*t^(-4)))}}}
Combine the exponents of like terms in a manner to produce positive exponents
{{{((s^(3-2)))/((48t^(-4+9)))}}} = {{{(s)/((48t^5))}}}
:
Was this detailed enough? Did you follow this?