Question 323763


{{{(8x^4+6)(8x^4-6)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(8x^4)+6)(highlight(8x^4)-6)}}} Multiply the <font color="red">F</font>irst terms:{{{(8x^4)(8x^4)=64x^8}}}.



{{{(highlight(8x^4)+6)(8x^4+highlight(-6))}}} Multiply the <font color="red">O</font>uter terms:{{{(8x^4)(-6)=-48x^4}}}.



{{{(8x^4+highlight(6))(highlight(8x^4)-6)}}} Multiply the <font color="red">I</font>nner terms:{{{(6)(8x^4)=48x^4}}}.



{{{(8x^4+highlight(6))(8x^4+highlight(-6))}}} Multiply the <font color="red">L</font>ast terms:{{{(6)(-6)=-36}}}.



---------------------------------------------------

So we have the terms: {{{64x^8}}}, {{{-48x^4}}}, {{{48x^4}}}, {{{-36}}} 



{{{64x^8-48x^4+48x^4-36}}} Now add every term listed above to make a single expression.



{{{64x^8-36}}} Now combine like terms.



So {{{(8x^4+6)(8x^4-6)}}} FOILs to {{{64x^8-36}}}.



In other words, {{{(8x^4+6)(8x^4-6)=64x^8-36}}}.