Question 322848
{{{x*sqrt(6t^3)-t*sqrt(24tx^2)}}} Start with the given expression.



{{{x*sqrt(6t^2*t)-t*sqrt(24tx^2)}}} Factor {{{t^3}}} into {{{t^2*t}}}



{{{x*sqrt(6t^2*t)-t*sqrt(4*6tx^2)}}} Factor {{{24tx^2}}} into {{{4*6tx^2}}}



{{{x*sqrt(6)*sqrt(t^2)*sqrt(t)-t*sqrt(4)*sqrt(6)*sqrt(t)*sqrt(x^2)}}} Break up the roots.



{{{x*sqrt(6)*sqrt(t^2)*sqrt(t)-t*2*sqrt(6)*sqrt(t)*sqrt(x^2)}}} Take the square root of 4 to get 2



{{{x*sqrt(6)*t*sqrt(t)-t*2*sqrt(6)*sqrt(t)*sqrt(x^2)}}} Take the square root of {{{t^2}}} to get 't'



{{{x*sqrt(6)*t*sqrt(t)-t*2*sqrt(6)*sqrt(t)*x}}} Take the square root of {{{x^2}}} to get 'x'



{{{tx*sqrt(6t)-2tx*sqrt(6t)}}} Rearrange the terms and combine the roots.



{{{sqrt(6t)(tx-2tx)}}} Factor out {{{sqrt(6t)}}}



{{{sqrt(6t)(-tx)}}} Combine like terms.



{{{-tx*sqrt(6t)}}} Rearrange the terms.



So {{{x*sqrt(6t^3)-t*sqrt(24tx^2)=-tx*sqrt(6t)}}}