Question 321723
{{{(-16x^3+4x^2+16x+3)/(4x+3)}}}
 .
.
.
First Term:{{{-4x^2}}}
{{{-4x^2(4x+3)= -16x^3-12x^2}}}
Subtract this product from the original polynomial to get the remainder,
{{{(-16x^3+4x^2+16x+3)-(-16x^3-12x^2)=16x^2+16x+3}}}
.
.
.
Second Term:{{{4x}}}
{{{4x(4x+3)=16x^2+12x}}}
Subtract this product from the first remainder to get the new remainder,
{{{(16x^2+16x+3)-(16x^2+12x)= 4x+3}}}
.
.
.
Third Term: {{{1}}}
{{{(1)(4x+3)= 4x+3}}}
Subtract this product from the second remainder to get the new remainder,
{{{(4x+3)-(4x+3)=0}}}
.
.
.
Gather all of the terms,

{{{(-16x^3+4x^2+16x+3)/(4x+3)=-4x^2+4x-1}}}