Question 321097


{{{2x^2+10x-168}}} Start with the given expression.



{{{2(x^2+5x-84)}}} Factor out the GCF {{{2}}}.



Now let's try to factor the inner expression {{{x^2+5x-84}}}



---------------------------------------------------------------



Looking at the expression {{{x^2+5x-84}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{5}}}, and the last term is {{{-84}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-84}}} to get {{{(1)(-84)=-84}}}.



Now the question is: what two whole numbers multiply to {{{-84}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-84}}} (the previous product).



Factors of {{{-84}}}:

1,2,3,4,6,7,12,14,21,28,42,84

-1,-2,-3,-4,-6,-7,-12,-14,-21,-28,-42,-84



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-84}}}.

1*(-84) = -84
2*(-42) = -84
3*(-28) = -84
4*(-21) = -84
6*(-14) = -84
7*(-12) = -84
(-1)*(84) = -84
(-2)*(42) = -84
(-3)*(28) = -84
(-4)*(21) = -84
(-6)*(14) = -84
(-7)*(12) = -84


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-84</font></td><td  align="center"><font color=black>1+(-84)=-83</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>2+(-42)=-40</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>3+(-28)=-25</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>4+(-21)=-17</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>6+(-14)=-8</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>7+(-12)=-5</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>84</font></td><td  align="center"><font color=black>-1+84=83</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>-2+42=40</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>-3+28=25</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>-4+21=17</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-6+14=8</font></td></tr><tr><td  align="center"><font color=red>-7</font></td><td  align="center"><font color=red>12</font></td><td  align="center"><font color=red>-7+12=5</font></td></tr></table>



From the table, we can see that the two numbers {{{-7}}} and {{{12}}} add to {{{5}}} (the middle coefficient).



So the two numbers {{{-7}}} and {{{12}}} both multiply to {{{-84}}} <font size=4><b>and</b></font> add to {{{5}}}



Now replace the middle term {{{5x}}} with {{{-7x+12x}}}. Remember, {{{-7}}} and {{{12}}} add to {{{5}}}. So this shows us that {{{-7x+12x=5x}}}.



{{{x^2+highlight(-7x+12x)-84}}} Replace the second term {{{5x}}} with {{{-7x+12x}}}.



{{{(x^2-7x)+(12x-84)}}} Group the terms into two pairs.



{{{x(x-7)+(12x-84)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-7)+12(x-7)}}} Factor out {{{12}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+12)(x-7)}}} Combine like terms. Or factor out the common term {{{x-7}}}



--------------------------------------------------



So {{{2(x^2+5x-84)}}} then factors further to {{{2(x+12)(x-7)}}}



===============================================================



Answer:



So {{{2x^2+10x-168}}} completely factors to {{{2(x+12)(x-7)}}}.



In other words, {{{2x^2+10x-168=2(x+12)(x-7)}}}.



Note: you can check the answer by expanding {{{2(x+12)(x-7)}}} to get {{{2x^2+10x-168}}} or by graphing the original expression and the answer (the two graphs should be identical).