Question 320559


Looking at the expression {{{3x^2+49x+72}}}, we can see that the first coefficient is {{{3}}}, the second coefficient is {{{49}}}, and the last term is {{{72}}}.



Now multiply the first coefficient {{{3}}} by the last term {{{72}}} to get {{{(3)(72)=216}}}.



Now the question is: what two whole numbers multiply to {{{216}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{49}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{216}}} (the previous product).



Factors of {{{216}}}:

1,2,3,4,6,8,9,12,18,24,27,36,54,72,108,216

-1,-2,-3,-4,-6,-8,-9,-12,-18,-24,-27,-36,-54,-72,-108,-216



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{216}}}.

1*216 = 216
2*108 = 216
3*72 = 216
4*54 = 216
6*36 = 216
8*27 = 216
9*24 = 216
12*18 = 216
(-1)*(-216) = 216
(-2)*(-108) = 216
(-3)*(-72) = 216
(-4)*(-54) = 216
(-6)*(-36) = 216
(-8)*(-27) = 216
(-9)*(-24) = 216
(-12)*(-18) = 216


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{49}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>216</font></td><td  align="center"><font color=black>1+216=217</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>108</font></td><td  align="center"><font color=black>2+108=110</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>72</font></td><td  align="center"><font color=black>3+72=75</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>4+54=58</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>6+36=42</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>8+27=35</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>9+24=33</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>12+18=30</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-216</font></td><td  align="center"><font color=black>-1+(-216)=-217</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-108</font></td><td  align="center"><font color=black>-2+(-108)=-110</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-72</font></td><td  align="center"><font color=black>-3+(-72)=-75</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>-4+(-54)=-58</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-6+(-36)=-42</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-8+(-27)=-35</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>-9+(-24)=-33</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-12+(-18)=-30</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{49}}}. So {{{3x^2+49x+72}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{3x^2+49x+72}}} doesn't factor at all (over the rational numbers).



So {{{3x^2+49x+72}}} is prime.



Make sure that you have the correct problem.