Question 319203
{{{(1/(4x^7))^3 (x^3)^6 }}} Start with the given expression.



{{{((1^3)/(4x^7)^3)(x^3)^6 }}} Distribute the exponent.



{{{((1^3)/(4^3(x^7)^3))(x^3)^6 }}} Distribute the exponent again.



{{{((1^3)/(64(x^7)^3))(x^3)^6 }}} Raise 4 to the third power to get 64.



{{{((1^3)/(64x^(7*3)))(x^(3*6)) }}} Multiply the exponents.



{{{((1^3)/(64x^(21)))(x^(18)) }}} Multiply.



{{{(1/(64x^(21)))(x^(18)) }}} Raise 1 to the third power to get 1.



{{{x^(18)/64x^(21) }}} Combine the fractions.



{{{x^(18-21)/64 }}} Subtract the exponents to divide.



{{{x^(-3)/64 }}} Subtract.



{{{1/(64x^3) }}} Flip the base with the negative exponent.



So {{{(1/(4x^7))^3(x^3)^6=1/(64x^3) }}}