Question 319162


{{{7a^2+63a-70}}} Start with the given expression.



{{{7(a^2+9a-10)}}} Factor out the GCF {{{7}}}.



Now let's try to factor the inner expression {{{a^2+9a-10}}}



---------------------------------------------------------------



Looking at the expression {{{a^2+9a-10}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{9}}}, and the last term is {{{-10}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-10}}} to get {{{(1)(-10)=-10}}}.



Now the question is: what two whole numbers multiply to {{{-10}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{9}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-10}}} (the previous product).



Factors of {{{-10}}}:

1,2,5,10

-1,-2,-5,-10



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-10}}}.

1*(-10) = -10
2*(-5) = -10
(-1)*(10) = -10
(-2)*(5) = -10


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{9}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>1+(-10)=-9</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>2+(-5)=-3</font></td></tr><tr><td  align="center"><font color=red>-1</font></td><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>-1+10=9</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-2+5=3</font></td></tr></table>



From the table, we can see that the two numbers {{{-1}}} and {{{10}}} add to {{{9}}} (the middle coefficient).



So the two numbers {{{-1}}} and {{{10}}} both multiply to {{{-10}}} <font size=4><b>and</b></font> add to {{{9}}}



Now replace the middle term {{{9a}}} with {{{-a+10a}}}. Remember, {{{-1}}} and {{{10}}} add to {{{9}}}. So this shows us that {{{-a+10a=9a}}}.



{{{a^2+highlight(-a+10a)-10}}} Replace the second term {{{9a}}} with {{{-a+10a}}}.



{{{(a^2-a)+(10a-10)}}} Group the terms into two pairs.



{{{a(a-1)+(10a-10)}}} Factor out the GCF {{{a}}} from the first group.



{{{a(a-1)+10(a-1)}}} Factor out {{{10}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(a+10)(a-1)}}} Combine like terms. Or factor out the common term {{{a-1}}}



--------------------------------------------------



So {{{7(a^2+9a-10)}}} then factors further to {{{7(a+10)(a-1)}}}



===============================================================



Answer:



So {{{7a^2+63a-70}}} completely factors to {{{7(a+10)(a-1)}}}.



In other words, {{{7a^2+63a-70=7(a+10)(a-1)}}}.



Note: you can check the answer by expanding {{{7(a+10)(a-1)}}} to get {{{7a^2+63a-70}}} or by graphing the original expression and the answer (the two graphs should be identical).