Question 318624

{{{(b+1/5)(b+1/5)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(b)+1/5)(highlight(b)+1/5)}}} Multiply the <font color="red">F</font>irst terms:{{{(b)*(b)=b^2}}}.



{{{(highlight(b)+1/5)(b+highlight(1/5))}}} Multiply the <font color="red">O</font>uter terms:{{{(b)*(1/5)=(1/5)*b}}}.



{{{(b+highlight(1/5))(highlight(b)+1/5)}}} Multiply the <font color="red">I</font>nner terms:{{{(1/5)*(b)=(1/5)*b}}}.



{{{(b+highlight(1/5))(b+highlight(1/5))}}} Multiply the <font color="red">L</font>ast terms:{{{(1/5)*(1/5)=1/25}}}.



---------------------------------------------------

So we have the terms: {{{b^2}}}, {{{(1/5)*b}}}, {{{(1/5)*b}}}, {{{1/25}}} 



{{{b^2+(1/5)*b+(1/5)*b+1/25}}} Now add every term listed above to make a single expression.



{{{b^2+(2/5)*b+1/25}}} Now combine like terms.



So {{{(b+1/5)(b+1/5)}}} FOILs to {{{b^2+(2/5)*b+1/25}}}.



In other words, {{{(b+1/5)(b+1/5)=b^2+(2/5)*b+1/25}}}.