Question 318015


{{{3c^2+6c-105}}} Start with the given expression.



{{{3(c^2+2c-35)}}} Factor out the GCF {{{3}}}.



Now let's try to factor the inner expression {{{c^2+2c-35}}}



---------------------------------------------------------------



Looking at the expression {{{c^2+2c-35}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{2}}}, and the last term is {{{-35}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-35}}} to get {{{(1)(-35)=-35}}}.



Now the question is: what two whole numbers multiply to {{{-35}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{2}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-35}}} (the previous product).



Factors of {{{-35}}}:

1,5,7,35

-1,-5,-7,-35



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-35}}}.

1*(-35) = -35
5*(-7) = -35
(-1)*(35) = -35
(-5)*(7) = -35


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{2}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-35</font></td><td  align="center"><font color=black>1+(-35)=-34</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>5+(-7)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>35</font></td><td  align="center"><font color=black>-1+35=34</font></td></tr><tr><td  align="center"><font color=red>-5</font></td><td  align="center"><font color=red>7</font></td><td  align="center"><font color=red>-5+7=2</font></td></tr></table>



From the table, we can see that the two numbers {{{-5}}} and {{{7}}} add to {{{2}}} (the middle coefficient).



So the two numbers {{{-5}}} and {{{7}}} both multiply to {{{-35}}} <font size=4><b>and</b></font> add to {{{2}}}



Now replace the middle term {{{2c}}} with {{{-5c+7c}}}. Remember, {{{-5}}} and {{{7}}} add to {{{2}}}. So this shows us that {{{-5c+7c=2c}}}.



{{{c^2+highlight(-5c+7c)-35}}} Replace the second term {{{2c}}} with {{{-5c+7c}}}.



{{{(c^2-5c)+(7c-35)}}} Group the terms into two pairs.



{{{c(c-5)+(7c-35)}}} Factor out the GCF {{{c}}} from the first group.



{{{c(c-5)+7(c-5)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(c+7)(c-5)}}} Combine like terms. Or factor out the common term {{{c-5}}}



--------------------------------------------------



So {{{3(c^2+2c-35)}}} then factors further to {{{3(c+7)(c-5)}}}



===============================================================



Answer:



So {{{3c^2+6c-105}}} completely factors to {{{3(c+7)(c-5)}}}.



In other words, {{{3c^2+6c-105=3(c+7)(c-5)}}}.



Note: you can check the answer by expanding {{{3(c+7)(c-5)}}} to get {{{3c^2+6c-105}}} or by graphing the original expression and the answer (the two graphs should be identical).