Question 317468
{{{(x+7)/(x^2+x-56) - (x+8)/(x^2-49)=(x+7)/((x+8)(x-7)) - (x+8)/((x-7)(x+7))}}}
Use a common denominator,{{{(x+8)(x-7)(x+7)}}}
{{{(x+7)/(x^2+x-56) - (x+8)/(x^2-49)=((x+7)(x+7))/((x+8)(x-7)(x+7)) - ((x+8)(x+8))/((x+8)(x-7)(x+7))}}}
{{{(x+7)/(x^2+x-56) - (x+8)/(x^2-49)=((x^2+14x+49)-(x^2+16x+64))/((x+8)(x-7)(x+7))}}}
{{{(x+7)/(x^2+x-56) - (x+8)/(x^2-49)=highlight((-(2x+15))/((x+8)(x-7)(x+7)))}}}