Question 317057


Looking at the expression {{{8b^2+10b-25}}}, we can see that the first coefficient is {{{8}}}, the second coefficient is {{{10}}}, and the last term is {{{-25}}}.



Now multiply the first coefficient {{{8}}} by the last term {{{-25}}} to get {{{(8)(-25)=-200}}}.



Now the question is: what two whole numbers multiply to {{{-200}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{10}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-200}}} (the previous product).



Factors of {{{-200}}}:

1,2,4,5,8,10,20,25,40,50,100,200

-1,-2,-4,-5,-8,-10,-20,-25,-40,-50,-100,-200



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-200}}}.

1*(-200) = -200
2*(-100) = -200
4*(-50) = -200
5*(-40) = -200
8*(-25) = -200
10*(-20) = -200
(-1)*(200) = -200
(-2)*(100) = -200
(-4)*(50) = -200
(-5)*(40) = -200
(-8)*(25) = -200
(-10)*(20) = -200


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{10}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-200</font></td><td  align="center"><font color=black>1+(-200)=-199</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-100</font></td><td  align="center"><font color=black>2+(-100)=-98</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-50</font></td><td  align="center"><font color=black>4+(-50)=-46</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>5+(-40)=-35</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>8+(-25)=-17</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>10+(-20)=-10</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>200</font></td><td  align="center"><font color=black>-1+200=199</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>100</font></td><td  align="center"><font color=black>-2+100=98</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>50</font></td><td  align="center"><font color=black>-4+50=46</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>-5+40=35</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>-8+25=17</font></td></tr><tr><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>20</font></td><td  align="center"><font color=red>-10+20=10</font></td></tr></table>



From the table, we can see that the two numbers {{{-10}}} and {{{20}}} add to {{{10}}} (the middle coefficient).



So the two numbers {{{-10}}} and {{{20}}} both multiply to {{{-200}}} <font size=4><b>and</b></font> add to {{{10}}}



Now replace the middle term {{{10b}}} with {{{-10b+20b}}}. Remember, {{{-10}}} and {{{20}}} add to {{{10}}}. So this shows us that {{{-10b+20b=10b}}}.



{{{8b^2+highlight(-10b+20b)-25}}} Replace the second term {{{10b}}} with {{{-10b+20b}}}.



{{{(8b^2-10b)+(20b-25)}}} Group the terms into two pairs.



{{{2b(4b-5)+(20b-25)}}} Factor out the GCF {{{2b}}} from the first group.



{{{2b(4b-5)+5(4b-5)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2b+5)(4b-5)}}} Combine like terms. Or factor out the common term {{{4b-5}}}



===============================================================



Answer:



So {{{8b^2+10b-25}}} factors to {{{(2b+5)(4b-5)}}}.



In other words, {{{8b^2+10b-25=(2b+5)(4b-5)}}}.



Note: you can check the answer by expanding {{{(2b+5)(4b-5)}}} to get {{{8b^2+10b-25}}} or by graphing the original expression and the answer (the two graphs should be identical).