Question 315555
Solve for the intersection points.
{{{x^2+y^2=11}}}
{{{y^2=11-x^2}}}
.
.
. 
{{{(x-3)^2+y^2=2}}}
{{{(x-3)^2+(11-x^2)=2}}}
{{{x^2-6x+9+11-x^2=2}}}
{{{-6x+20=2}}}
{{{-6x=-18}}}
{{{highlight(x=3)}}}
Now solve for y
{{{y^2=11-x^2}}}
{{{y^2=11-9}}}
{{{y^2=2}}}
{{{highlight(y=0 +- sqrt(2))}}}
Points P and Q are ({{{3}}},{{{-sqrt(2)}}}) and ({{{3}}},{{{sqrt(2)}}}).
The length of PQ is {{{2*sqrt(2)}}}.