Question 314403
{{{((8x^2)/(x^2)) * ((x^2+6x+9)/(16x^3))=((cross(8)*cross(x^2))/cross(x^2)) * ((x+3)^2)/(2*cross(8)*x^3))}}}
{{{((8x^2)/(x^2)) * ((x^2+6x+9)/(16x^3))=(x+3)^2/(2x^3)}}}
.
.
.
Dividing by a fraction is equivalent to multiplying by its reciprocal.
{{{((3y+12)/(8y^3))/((9y+36)/(16y^3))=((3y+12)/(8y^3))*((16y^3)/(9y+36))}}}
{{{((3y+12)/(8y^3))/((9y+36)/(16y^3))=((3(y+4))/cross(8y^3))*((2*cross(8y^3))/(9(y+4)))}}}
{{{((3y+12)/(8y^3))/((9y+36)/(16y^3))=(cross(3)cross(y+4))*(2)/(3*cross(3)*cross(y+4)))}}}
{{{((3y+12)/(8y^3))/((9y+36)/(16y^3))=2/3}}}