Question 314155
Use the common denominator, {{{7x^3}}}.
{{{(x+1)/(7x)-(x-3)/(x^3)= (x+1)x^2/(7x^3)-7(x-3)/(7x^3)}}}
{{{(x+1)/(7x)-(x-3)/(x^3)= ((x+1)x^2-7(x-3))/(7x^3)}}}
{{{ (x+1)/(7x)-(x-3)/(x^3)= (x^3+x^2-7x+21)/(7x^3)}}}
.
.
.
{{{(x+1)/(4x+8)-2x^2/(8x^2-32)=(x+1)/(4*(x+2))-2x^2/(8(x^2-4))}}}
{{{(x+1)/(4x+8)-2x^2/(8x^2-32)=(x+1)/(4*(x+2))-x^2/4((x+2)(x-2))}}}
Use the common denominator, {{{(x+2)(x-2)}}}
{{{(x+1)/(4x+8)-2x^2/(8x^2-32)=(x+1)/(4*(x+2))-x^2/4((x+2)(x-2))}}}
{{{(x+1)/(4x+8)-2x^2/(8x^2-32)=((x+1)(x-2))/(4*(x+2)(x-2))-x^2/4((x+2)(x-2))}}}
{{{(x+1)/(4x+8)-2x^2/(8x^2-32)=(x^2-x-2-x^2)/(4(x+2)(x-2))}}}
{{{(x+1)/(4x+8)-2x^2/(8x^2-32)=(-x-2)/(4(x+2)(x-2))}}}
{{{(x+1)/(4x+8)-2x^2/(8x^2-32)=-(x+2)/(4(x+2)(x-2))}}}
{{{(x+1)/(4x+8)-2x^2/(8x^2-32)=-1/(4(x-2))}}}