Question 312054
{{{f(x)=sin(x)}}}
{{{g(x)=1/x}}}
{{{h(x)=abs(x)}}}
.
.
.
a){{{f(g(h(x)))=sin(abs(1/x))}}}
.
.
.
b) h(x)- Take the absolute value of x.
g(h(x))-Take the absolute value of the reciprocal of x.
f(g(h(x))- Take the sine of the absolute value of the reciprocal of x. 
.
.
.
c) The function is undefined at x=0 since division by zero is undefined. But there is a lot of action as x approaches zero from both sides. 


({{{-2*pi<x<2*pi}}})
{{{ graph( 300, 300, -7, 7, -2, 2, sin(abs(1/x))) }}}
.
.
.
({{{-0.1<x<0.1}}})
{{{ graph( 300, 300, -.1, .1, -2, 2, sin(abs(1/x))) }}}
.
.
.
({{{-0.01<x<0.01}}})
{{{ graph( 300, 300, -.01, .01, -2, 2, sin(abs(1/x))) }}}
.
.
.
({{{-0.001<x<0.001}}})
{{{ graph( 300, 300, -.001, .001, -2, 2, sin(abs(1/x))) }}}