Question 309886
I'm assuming that you want to factor this.



{{{2t^2+4t-30}}} Start with the given expression.



{{{2(t^2+2t-15)}}} Factor out the GCF {{{2}}}.



Now let's try to factor the inner expression {{{t^2+2t-15}}}



---------------------------------------------------------------



Looking at the expression {{{t^2+2t-15}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{2}}}, and the last term is {{{-15}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-15}}} to get {{{(1)(-15)=-15}}}.



Now the question is: what two whole numbers multiply to {{{-15}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{2}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-15}}} (the previous product).



Factors of {{{-15}}}:

1,3,5,15

-1,-3,-5,-15



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-15}}}.

1*(-15) = -15
3*(-5) = -15
(-1)*(15) = -15
(-3)*(5) = -15


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{2}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>1+(-15)=-14</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>3+(-5)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-1+15=14</font></td></tr><tr><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>-3+5=2</font></td></tr></table>



From the table, we can see that the two numbers {{{-3}}} and {{{5}}} add to {{{2}}} (the middle coefficient).



So the two numbers {{{-3}}} and {{{5}}} both multiply to {{{-15}}} <font size=4><b>and</b></font> add to {{{2}}}



Now replace the middle term {{{2t}}} with {{{-3t+5t}}}. Remember, {{{-3}}} and {{{5}}} add to {{{2}}}. So this shows us that {{{-3t+5t=2t}}}.



{{{t^2+highlight(-3t+5t)-15}}} Replace the second term {{{2t}}} with {{{-3t+5t}}}.



{{{(t^2-3t)+(5t-15)}}} Group the terms into two pairs.



{{{t(t-3)+(5t-15)}}} Factor out the GCF {{{t}}} from the first group.



{{{t(t-3)+5(t-3)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(t+5)(t-3)}}} Combine like terms. Or factor out the common term {{{t-3}}}



--------------------------------------------------



So {{{2(t^2+2t-15)}}} then factors further to {{{2(t+5)(t-3)}}}



===============================================================



Answer:



So {{{2t^2+4t-30}}} completely factors to {{{2(t+5)(t-3)}}}.



In other words, {{{2t^2+4t-30=2(t+5)(t-3)}}}.



Note: you can check the answer by expanding {{{2(t+5)(t-3)}}} to get {{{2t^2+4t-30}}} or by graphing the original expression and the answer (the two graphs should be identical).