Question 305630
<font face="Garamond" size="+2">


You have 


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x^2\ +\ 10x\ +\ 1\ =\ 0]


So if the solution to the general quadratic equation,


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ ax^2\ +\ bx\ +\ c\ =\ 0]


is


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x = \frac{-b\ \pm\ \sqrt{b^2\ -\ 4ac}}{2a} ] 


For your problem determine the coefficients by inspection: *[tex \Large a\ =\ 1], *[tex \Large\ \ b\ =\ 10], and *[tex \Large c\ =\ 1]


Just plug in the numbers:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x = \frac{-(10)\ \pm\ \sqrt{(10)^2\ -\ 4(1)(1)}}{2(1)} ]


You can do your own arithmetic.


John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>