Question 301615
Numerator:{{{(6/(x^2-x-12))+(1/(x+3)))}}}
Denominator: {{{1+1/(x+3)}}}
Let's factor first then simplify.
Numerator:{{{(6/((x-4)(x+3)))+(1/(x+3)))}}}
Denominator: {{{1+1/(x+3)}}}
Multiply numerator and denominator by {{{(x+3)}}}.
Numerator:{{{(6/((x-4)))+1=6/(x-4)+(x-4)/(x-4)=(6+x-4)/(x-4)=(x+2)/(x-4))}}}
Denominator: {{{(x+3)+1=x+4}}}
Now put it all together.
{{{((6/(x^2-x-12))+(1/(x+3)))/(1+1/(x+3))=((x+2)/(x-4))/(x+4)}}}
{{{((6/(x^2-x-12))+(1/(x+3)))/(1+1/(x+3))=(x+2)/((x-4)(x+4))}}}