Question 299535


Looking at the expression {{{x^2+8x-20}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{8}}}, and the last term is {{{-20}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-20}}} to get {{{(1)(-20)=-20}}}.



Now the question is: what two whole numbers multiply to {{{-20}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{8}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-20}}} (the previous product).



Factors of {{{-20}}}:

1,2,4,5,10,20

-1,-2,-4,-5,-10,-20



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-20}}}.

1*(-20) = -20
2*(-10) = -20
4*(-5) = -20
(-1)*(20) = -20
(-2)*(10) = -20
(-4)*(5) = -20


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{8}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>1+(-20)=-19</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>2+(-10)=-8</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>4+(-5)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-1+20=19</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>-2+10=8</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-4+5=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{10}}} add to {{{8}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{10}}} both multiply to {{{-20}}} <font size=4><b>and</b></font> add to {{{8}}}



Now replace the middle term {{{8x}}} with {{{-2x+10x}}}. Remember, {{{-2}}} and {{{10}}} add to {{{8}}}. So this shows us that {{{-2x+10x=8x}}}.



{{{x^2+highlight(-2x+10x)-20}}} Replace the second term {{{8x}}} with {{{-2x+10x}}}.



{{{(x^2-2x)+(10x-20)}}} Group the terms into two pairs.



{{{x(x-2)+(10x-20)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-2)+10(x-2)}}} Factor out {{{10}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+10)(x-2)}}} Combine like terms. Or factor out the common term {{{x-2}}}



===============================================================



Answer:



So {{{x^2+8x-20}}} factors to {{{(x+10)(x-2)}}}.



In other words, {{{x^2+8x-20=(x+10)(x-2)}}}.



Note: you can check the answer by expanding {{{(x+10)(x-2)}}} to get {{{x^2+8x-20}}} or by graphing the original expression and the answer (the two graphs should be identical).