Question 299541


Looking at the expression {{{18n^2+57n-10}}}, we can see that the first coefficient is {{{18}}}, the second coefficient is {{{57}}}, and the last term is {{{-10}}}.



Now multiply the first coefficient {{{18}}} by the last term {{{-10}}} to get {{{(18)(-10)=-180}}}.



Now the question is: what two whole numbers multiply to {{{-180}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{57}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-180}}} (the previous product).



Factors of {{{-180}}}:

1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180

-1,-2,-3,-4,-5,-6,-9,-10,-12,-15,-18,-20,-30,-36,-45,-60,-90,-180



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-180}}}.

1*(-180) = -180
2*(-90) = -180
3*(-60) = -180
4*(-45) = -180
5*(-36) = -180
6*(-30) = -180
9*(-20) = -180
10*(-18) = -180
12*(-15) = -180
(-1)*(180) = -180
(-2)*(90) = -180
(-3)*(60) = -180
(-4)*(45) = -180
(-5)*(36) = -180
(-6)*(30) = -180
(-9)*(20) = -180
(-10)*(18) = -180
(-12)*(15) = -180


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{57}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-180</font></td><td  align="center"><font color=black>1+(-180)=-179</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-90</font></td><td  align="center"><font color=black>2+(-90)=-88</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>3+(-60)=-57</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>4+(-45)=-41</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>5+(-36)=-31</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>6+(-30)=-24</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>9+(-20)=-11</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>10+(-18)=-8</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>12+(-15)=-3</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>180</font></td><td  align="center"><font color=black>-1+180=179</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>90</font></td><td  align="center"><font color=black>-2+90=88</font></td></tr><tr><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>60</font></td><td  align="center"><font color=red>-3+60=57</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>-4+45=41</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>-5+36=31</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-6+30=24</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-9+20=11</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-10+18=8</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-12+15=3</font></td></tr></table>



From the table, we can see that the two numbers {{{-3}}} and {{{60}}} add to {{{57}}} (the middle coefficient).



So the two numbers {{{-3}}} and {{{60}}} both multiply to {{{-180}}} <font size=4><b>and</b></font> add to {{{57}}}



Now replace the middle term {{{57n}}} with {{{-3n+60n}}}. Remember, {{{-3}}} and {{{60}}} add to {{{57}}}. So this shows us that {{{-3n+60n=57n}}}.



{{{18n^2+highlight(-3n+60n)-10}}} Replace the second term {{{57n}}} with {{{-3n+60n}}}.



{{{(18n^2-3n)+(60n-10)}}} Group the terms into two pairs.



{{{3n(6n-1)+(60n-10)}}} Factor out the GCF {{{3n}}} from the first group.



{{{3n(6n-1)+10(6n-1)}}} Factor out {{{10}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3n+10)(6n-1)}}} Combine like terms. Or factor out the common term {{{6n-1}}}



===============================================================



Answer:



So {{{18n^2+57n-10}}} factors to {{{(3n+10)(6n-1)}}}.



In other words, {{{18n^2+57n-10=(3n+10)(6n-1)}}}.



Note: you can check the answer by expanding {{{(3n+10)(6n-1)}}} to get {{{18n^2+57n-10}}} or by graphing the original expression and the answer (the two graphs should be identical).