Question 299484
Note: {{{9x^2-25}}} can be written as {{{9x^2+0x-25}}}



Looking at the expression {{{9x^2+0x-25}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{0}}}, and the last term is {{{-25}}}.



Now multiply the first coefficient {{{9}}} by the last term {{{-25}}} to get {{{(9)(-25)=-225}}}.



Now the question is: what two whole numbers multiply to {{{-225}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{0}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-225}}} (the previous product).



Factors of {{{-225}}}:

1,3,5,9,15,25,45,75,225

-1,-3,-5,-9,-15,-25,-45,-75,-225



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-225}}}.

1*(-225) = -225
3*(-75) = -225
5*(-45) = -225
9*(-25) = -225
15*(-15) = -225
(-1)*(225) = -225
(-3)*(75) = -225
(-5)*(45) = -225
(-9)*(25) = -225
(-15)*(15) = -225


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{0}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-225</font></td><td  align="center"><font color=black>1+(-225)=-224</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-75</font></td><td  align="center"><font color=black>3+(-75)=-72</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>5+(-45)=-40</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>9+(-25)=-16</font></td></tr><tr><td  align="center"><font color=red>15</font></td><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>15+(-15)=0</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>225</font></td><td  align="center"><font color=black>-1+225=224</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>75</font></td><td  align="center"><font color=black>-3+75=72</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>-5+45=40</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>-9+25=16</font></td></tr><tr><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>15</font></td><td  align="center"><font color=red>-15+15=0</font></td></tr></table>



From the table, we can see that the two numbers {{{-15}}} and {{{15}}} add to {{{0}}} (the middle coefficient).



So the two numbers {{{-15}}} and {{{15}}} both multiply to {{{-225}}} <font size=4><b>and</b></font> add to {{{0}}}



Now replace the middle term {{{0x}}} with {{{-15x+15x}}}. Remember, {{{-15}}} and {{{15}}} add to {{{0}}}. So this shows us that {{{-15x+15x=0x}}}.



{{{9x^2+highlight(-15x+15x)-25}}} Replace the second term {{{0x}}} with {{{-15x+15x}}}.



{{{(9x^2-15x)+(15x-25)}}} Group the terms into two pairs.



{{{3x(3x-5)+(15x-25)}}} Factor out the GCF {{{3x}}} from the first group.



{{{3x(3x-5)+5(3x-5)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3x+5)(3x-5)}}} Combine like terms. Or factor out the common term {{{3x-5}}}



===============================================================



Answer:



So {{{9x^2+0x-25}}} factors to {{{(3x+5)(3x-5)}}}.



In other words, {{{9x^2+0x-25=(3x+5)(3x-5)}}}.



So {{{9x^2-25=(3x+5)(3x-5)}}}.



Note: you can check the answer by expanding {{{(3x+5)(3x-5)}}} to get {{{9x^2+0x-25}}} or by graphing the original expression and the answer (the two graphs should be identical). Also, {{{9x^2-25}}} is a difference of squares.