Question 299373


Looking at the expression {{{2x^2+15x+25}}}, we can see that the first coefficient is {{{2}}}, the second coefficient is {{{15}}}, and the last term is {{{25}}}.



Now multiply the first coefficient {{{2}}} by the last term {{{25}}} to get {{{(2)(25)=50}}}.



Now the question is: what two whole numbers multiply to {{{50}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{15}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{50}}} (the previous product).



Factors of {{{50}}}:

1,2,5,10,25,50

-1,-2,-5,-10,-25,-50



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{50}}}.

1*50 = 50
2*25 = 50
5*10 = 50
(-1)*(-50) = 50
(-2)*(-25) = 50
(-5)*(-10) = 50


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{15}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>50</font></td><td  align="center"><font color=black>1+50=51</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>2+25=27</font></td></tr><tr><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>5+10=15</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-50</font></td><td  align="center"><font color=black>-1+(-50)=-51</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>-2+(-25)=-27</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-5+(-10)=-15</font></td></tr></table>



From the table, we can see that the two numbers {{{5}}} and {{{10}}} add to {{{15}}} (the middle coefficient).



So the two numbers {{{5}}} and {{{10}}} both multiply to {{{50}}} <font size=4><b>and</b></font> add to {{{15}}}



Now replace the middle term {{{15x}}} with {{{5x+10x}}}. Remember, {{{5}}} and {{{10}}} add to {{{15}}}. So this shows us that {{{5x+10x=15x}}}.



{{{2x^2+highlight(5x+10x)+25}}} Replace the second term {{{15x}}} with {{{5x+10x}}}.



{{{(2x^2+5x)+(10x+25)}}} Group the terms into two pairs.



{{{x(2x+5)+(10x+25)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(2x+5)+5(2x+5)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+5)(2x+5)}}} Combine like terms. Or factor out the common term {{{2x+5}}}



===============================================================



Answer:



So {{{2x^2+15x+25}}} factors to {{{(x+5)(2x+5)}}}.



In other words, {{{2x^2+15x+25=(x+5)(2x+5)}}}.



Note: you can check the answer by expanding {{{(x+5)(2x+5)}}} to get {{{2x^2+15x+25}}} or by graphing the original expression and the answer (the two graphs should be identical).