Question 299372


{{{3x^2+12x-36}}} Start with the given expression.



{{{3(x^2+4x-12)}}} Factor out the GCF {{{3}}}.



Now let's try to factor the inner expression {{{x^2+4x-12}}}



---------------------------------------------------------------



Looking at the expression {{{x^2+4x-12}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{4}}}, and the last term is {{{-12}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-12}}} to get {{{(1)(-12)=-12}}}.



Now the question is: what two whole numbers multiply to {{{-12}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{4}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-12}}} (the previous product).



Factors of {{{-12}}}:

1,2,3,4,6,12

-1,-2,-3,-4,-6,-12



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-12}}}.

1*(-12) = -12
2*(-6) = -12
3*(-4) = -12
(-1)*(12) = -12
(-2)*(6) = -12
(-3)*(4) = -12


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{4}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>1+(-12)=-11</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>2+(-6)=-4</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>3+(-4)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-1+12=11</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>6</font></td><td  align="center"><font color=red>-2+6=4</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-3+4=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{6}}} add to {{{4}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{6}}} both multiply to {{{-12}}} <font size=4><b>and</b></font> add to {{{4}}}



Now replace the middle term {{{4x}}} with {{{-2x+6x}}}. Remember, {{{-2}}} and {{{6}}} add to {{{4}}}. So this shows us that {{{-2x+6x=4x}}}.



{{{x^2+highlight(-2x+6x)-12}}} Replace the second term {{{4x}}} with {{{-2x+6x}}}.



{{{(x^2-2x)+(6x-12)}}} Group the terms into two pairs.



{{{x(x-2)+(6x-12)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-2)+6(x-2)}}} Factor out {{{6}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+6)(x-2)}}} Combine like terms. Or factor out the common term {{{x-2}}}



--------------------------------------------------



So {{{3(x^2+4x-12)}}} then factors further to {{{3(x+6)(x-2)}}}



===============================================================



Answer:



So {{{3x^2+12x-36}}} completely factors to {{{3(x+6)(x-2)}}}.



In other words, {{{3x^2+12x-36=3(x+6)(x-2)}}}.



Note: you can check the answer by expanding {{{3(x+6)(x-2)}}} to get {{{3x^2+12x-36}}} or by graphing the original expression and the answer (the two graphs should be identical).