Question 298081
<font face="Garamond" size="+2">

Use the caret mark (^ - shift-6) to indicate raising to a power.  Your problem would be correctly rendered (x + 6)^3


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ (x\ +\ 6)^3\ =\ (x\ +\ 6)(x\ +\ 6)^3\ =\ (x\ +\ 3)(x^2\ +\ 12x\ +\ 36)\ =\ x^3\ +\ 18x^2\ +\ 108x\ +\ 216]


In general, *[tex \LARGE (a\ +\ b)^3\ =\ a^3\ +\ 3a^2b\ +\ 3ab^2\ + b^3]


Even more in general,


*[tex \LARGE(a\ +\ b)^n\ =\ \left(n\cr0\right)a^nb^0\ +\ \left(n\cr1\right)a^{n-1}b^1\ +\  \left(n\cr2\right)a^{n-2}b^2\ +\ \cdots\ +\  \left(\ n\cr n-2\right)a^2b^{n-2}\ +\  \left(\ n\cr n-1\right)a^1b^{n-1}\ +\ \left(n\cr n\right)a^0b^n]


Where *[tex \LARGE \left(n\cr k\right)] is the number of ways to choose *[tex \LARGE n] things taken *[tex \LARGE k] at a time and is equal to *[tex \LARGE \frac{n!}{k!(n-k)!}]  



John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>