Question 298078
Note: *[Tex \LARGE \left(x_{1}, y_{1}\right)] is the first point *[Tex \LARGE \left(-6,-5\right)]. So this means that {{{x[1]=-6}}} and {{{y[1]=-5}}}.

Also, *[Tex \LARGE \left(x_{2}, y_{2}\right)] is the second point *[Tex \LARGE \left(-10,-16\right)].  So this means that {{{x[2]=-10}}} and {{{y[2]=-16}}}.



{{{m=(y[2]-y[1])/(x[2]-x[1])}}} Start with the slope formula.



{{{m=(-16--5)/(-10--6)}}} Plug in {{{y[2]=-16}}}, {{{y[1]=-5}}}, {{{x[2]=-10}}}, and {{{x[1]=-6}}}



{{{m=(-11)/(-10--6)}}} Subtract {{{-5}}} from {{{-16}}} to get {{{-11}}}



{{{m=(-11)/(-4)}}} Subtract {{{-6}}} from {{{-10}}} to get {{{-4}}}



{{{m=11/4}}} Reduce



So the slope of the line that goes through the points *[Tex \LARGE \left(-6,-5\right)] and *[Tex \LARGE \left(-10,-16\right)] is {{{m=11/4}}}