Question 297684
{{{z^2/1=z/5+6/5 }}}
{{{z^2-z/5-6/5=0}}}
You can multiply by the LCD to get rid of the fractions, in this case by 5.
{{{5z^2-z-6=0}}}
Then {{{a=5}}}, {{{b=-1}}}, {{{c=-6}}}.
{{{z = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}} 
{{{z = (1 +- sqrt( 1-4*5*(-6) ))/(2*5) }}}
{{{z = (1 +- sqrt( 121 ))/(10) }}} 
{{{z = (1 +- 11)/(10) }}}  
.
.
.
Or you can just move forward with the fractions.
{{{z^2/1=z/5+6/5}}} 
{{{z^2-z/5-6/5=0}}}
{{{a=1}}}, {{{b=-1/5}}}, {{{c=-6/5}}}.
{{{z = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}} 
{{{z = (1/5 +- sqrt( 1/25-4*1*(-6/5) ))/2 }}}
{{{z = (1/5 +- sqrt( 1/25+24/5) )/2 }}}
{{{z = (1/5 +- sqrt( 1/25+120/25) )/2 }}}
{{{z = (1/5 +- sqrt( 121/25) )/2 }}}
{{{z = (1/5 +- 11/5) /2 }}}
{{{z = (1/5)(1 +- 11)/2 }}}
{{{z = (1 +- 11)/10 }}}
You'll get to the same place.
.
.
.
{{{z=-10/10=highlight(-1)}}} and {{{z=12/10=highlight(6/5)}}}
.
.
.
{{{ graph( 300, 300, -3, 3, -3,3, x^2-x/5-6/5) }}}