Question 297153
{{{sec(x)/(cot(x)+tan(x))=sin(x)}}}
Let {{{ S=sin(x) }}} and {{{C=cos(x)}}} then,
{{{sec(x)=1/C}}}, {{{cot(x)=C/S}}}, {{{tan(x)=S/C}}}
.
.
.
{{{sec(x)/(cot(x)+tan(x))=(1/C)/(C/S+S/C)}}}
{{{sec(x)/(cot(x)+tan(x))=(1/C)/((1/C)*(C^2/S)+(1/C)*(S))}}}
{{{sec(x)/(cot(x)+tan(x))=cross((1/C))/(cross((1/C))*(C^2/S+S))}}}
{{{sec(x)/(cot(x)+tan(x))=S/(S*(C^2/S+S))}}}
{{{sec(x)/(cot(x)+tan(x))=S/(C^2+S^2)}}}
{{{sec(x)/(cot(x)+tan(x))=S/(1)}}}
{{{sec(x)/(cot(x)+tan(x))=S}}}
{{{sec(x)/(cot(x)+tan(x))=sin(x)}}}