Question 297100
{{{x^2-11=0}}} Start with the given equation.



Notice that the quadratic {{{x^2-11}}} is in the form of {{{Ax^2+Bx+C}}} where {{{A=1}}}, {{{B=0}}}, and {{{C=-11}}}



Let's use the quadratic formula to solve for "x":



{{{x = (-B +- sqrt( B^2-4AC ))/(2A)}}} Start with the quadratic formula



{{{x = (0 +- sqrt( (0)^2-4(1)(-11) ))/(2(1))}}} Plug in  {{{A=1}}}, {{{B=0}}}, and {{{C=-11}}}



{{{x = (0 +- sqrt( 0-4(1)(-11) ))/(2(1))}}} Square {{{0}}} to get {{{0}}}. 



{{{x = (0 +- sqrt( 0--44 ))/(2(1))}}} Multiply {{{4(1)(-11)}}} to get {{{-44}}}



{{{x = (0 +- sqrt( 0+44 ))/(2(1))}}} Rewrite {{{sqrt(0--44)}}} as {{{sqrt(0+44)}}}



{{{x = (0 +- sqrt( 44 ))/(2(1))}}} Add {{{0}}} to {{{44}}} to get {{{44}}}



{{{x = (0 +- sqrt( 44 ))/(2)}}} Multiply {{{2}}} and {{{1}}} to get {{{2}}}. 



{{{x = (0 +- 2*sqrt(11))/(2)}}} Simplify the square root  (note: If you need help with simplifying square roots, check out this <a href=http://www.algebra.com/algebra/homework/Radicals/simplifying-square-roots.solver> solver</a>)  



{{{x = (0)/(2) +- (2*sqrt(11))/(2)}}} Break up the fraction.  



{{{x = 0 +-sqrt(11)}}} Reduce.  



{{{x = sqrt(11)}}} or {{{x = -sqrt(11)}}} Break up the expression and simplify.  



So the solutions are {{{x = sqrt(11)}}} or {{{x = -sqrt(11)}}}