Question 296467
how do you solve cos^2(x)-sin^2(x)+ sin(x) + 1 = 0 ?
-----------------
Since cos^2(x) = 1-sin^2(x)
---
1-sin^2(x) - sin^2(x) + sin(x) = 0 
------------------
-2sin^2(x)+sin(x)+1 = 0
2sin^2(x) - sin(x) -1 = 0
(2sin(x) + 1)(sin(x) -1) = 0
sin(x) = -1/2 or sin(x) = 1
---
x = (7/6)pi or x = (11/12)pi or x = pi/2
===========================================
Cheers,
Stan H.