Question 295822
{{{x = sqrt(2x + 1) + 1}}}
{{{x - 1 = sqrt(2x + 1)}}}
{{{(x - 1)^2 = (sqrt(2x + 1))^2}}}
{{{x^2 - 2x + 1 = 2x + 1}}}
{{{x^2 - 2x + 1 - 2x - 1 = 0}}}
{{{x^2 - 4x = 0}}}
{{{x*(x - 4) = 0}}}
x = 0 or x - 4 = 0
x = 0 or x = 4


let's check the answer:
if x = 0 then 
{{{0 = sqrt(2*0+1)+1}}}
{{{0 = sqrt(0+1)+1}}}
{{{0 = sqrt(1)+1}}}
{{{0 = 1+1}}}
{{{0 = 2}}}
because the left and the right side aren't match, so we won't use this answer
if x = 4 then 
{{{4 = sqrt(2*4+1)+1}}}
{{{4 = sqrt(8+1)+1}}}
{{{4 = sqrt(9)+1}}}
{{{4 = 3+1}}}
{{{4 = 4}}}
the left side and the right side are match, so the answer is: x = 4