Question 290056
I need steps for simplifying 6(sqrt7/sqrt4)+3(sqrt28)-10(sqrt1/sqrt7). 

6(sqrt7/sqrt4)+3(sqrt28)-10(sqrt1/sqrt7) =

6*(sqrt7)/2) + 3*(sqrt(4)*sqrt(7)) - 10*(1/sqrt(7)) =
(6/2)*sqrt(7) + 3*2*sqrt(7) - 10/sqrt(7) =
3*sqrt(7) + 6*sqrt(7) - 10/sqrt(7) =
9*sqrt(7) - 10/sqrt(7)

To remove the "sqrt" from the denominator of the second term we can multiply both its numerator and denominator by sqrt(7):

9*sqrt(7) - (10*sqrt(7))/((sqrt(7)*sqrt(7)) =
9*sqrt(7) - 10*sqrt(7)/7 =

63/7*sqrt(7) - 10/7*sqrt(7) =

(53/7)*sqrt(7)