Question 289716
<font face="Garamond" size="+2">


Distance from P to the origin is


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sqrt{(-4)^2+(3)^2}\ =\ 5], so:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \cos\phi\ =\ -\frac{4}{5}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sin\phi\ =\ \frac{3}{5}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \tan\phi\ =\ \frac{\sin\phi}{\cos\phi}\ =\ \frac{\frac{3}{5}}{-\frac{4}{5}}\ =\ -\frac{3}{4}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sec\phi\ =\ \frac{1}{\cos\phi}\ =\ -\frac{5}{4}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \csc\phi\ =\ \frac{1}{\sin\phi}\  =\ \frac{5}{3}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \cot\phi\ =\ \frac{1}{\tan\phi}\ =\ \frac{\cos\phi}{\sin\phi}\ =\ \frac{-\frac{4}{5}}{\frac{3}{5}}\ =\ -\frac{4}{3}]



John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>