Question 285172
Let x=tens digit
And let y=units digit
The number then is 10x+y
Product of me and myself=(10x+y)*(10x+y)
The sum of me and myself=(10x+y)+(10x+y)=2(10x+y)
So our equation to solve is:

(10x+y)^2-2(10x+y)=99  subtract 99 from each side
(10x+y)^2-2(10x+y)-99=0  quadratic in standard form and it can be factored
{(10x+y)-11}{(10x+y)+9}=0
10x+y=11---------------------answer
10x+y=-9-----------------no good, not a 2 digit number
So the 2 digit number is 11

CK
11*11=121
11+11-22
121-22=99
99=99
Hope this helps---ptaylor