Question 283604
*[Tex \LARGE 2^{1-x}=9^{x+1}]



*[Tex \LARGE \ln\left(2^{1-x}\right)=\ln\left(9^{x+1}\right)]



*[Tex \LARGE (1-x)\ln\left(2\right)=(x+1)\ln\left(9\right)]



*[Tex \LARGE \ln\left(2\right)-x\ln\left(2\right)=x\ln\left(9\right)+\ln\left(9\right)]



*[Tex \LARGE -x\ln\left(2\right)-x\ln\left(9\right)=\ln\left(9\right)-\ln\left(2\right)]



*[Tex \LARGE -x(\ln\left(2\right)+\ln\left(9\right))=\ln\left(9\right)-\ln\left(2\right)]



*[Tex \LARGE -x=\frac{\ln\left(9\right)-\ln\left(2\right)}{\ln\left(2\right)+\ln\left(9\right)}]



*[Tex \LARGE x=-\frac{\ln\left(9\right)-\ln\left(2\right)}{\ln\left(2\right)+\ln\left(9\right)}]



*[Tex \LARGE x\approx-0.52037506686373]