Question 282643


Looking at the expression {{{x^2+30x+225}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{30}}}, and the last term is {{{225}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{225}}} to get {{{(1)(225)=225}}}.



Now the question is: what two whole numbers multiply to {{{225}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{30}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{225}}} (the previous product).



Factors of {{{225}}}:

1,3,5,9,15,25,45,75,225

-1,-3,-5,-9,-15,-25,-45,-75,-225



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{225}}}.

1*225 = 225
3*75 = 225
5*45 = 225
9*25 = 225
15*15 = 225
(-1)*(-225) = 225
(-3)*(-75) = 225
(-5)*(-45) = 225
(-9)*(-25) = 225
(-15)*(-15) = 225


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{30}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>225</font></td><td  align="center"><font color=black>1+225=226</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>75</font></td><td  align="center"><font color=black>3+75=78</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>5+45=50</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>9+25=34</font></td></tr><tr><td  align="center"><font color=red>15</font></td><td  align="center"><font color=red>15</font></td><td  align="center"><font color=red>15+15=30</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-225</font></td><td  align="center"><font color=black>-1+(-225)=-226</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-75</font></td><td  align="center"><font color=black>-3+(-75)=-78</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-5+(-45)=-50</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>-9+(-25)=-34</font></td></tr><tr><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-15+(-15)=-30</font></td></tr></table>



From the table, we can see that the two numbers {{{15}}} and {{{15}}} add to {{{30}}} (the middle coefficient).



So the two numbers {{{15}}} and {{{15}}} both multiply to {{{225}}} <font size=4><b>and</b></font> add to {{{30}}}



Now replace the middle term {{{30x}}} with {{{15x+15x}}}. Remember, {{{15}}} and {{{15}}} add to {{{30}}}. So this shows us that {{{15x+15x=30x}}}.



{{{x^2+highlight(15x+15x)+225}}} Replace the second term {{{30x}}} with {{{15x+15x}}}.



{{{(x^2+15x)+(15x+225)}}} Group the terms into two pairs.



{{{x(x+15)+(15x+225)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+15)+15(x+15)}}} Factor out {{{15}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+15)(x+15)}}} Combine like terms. Or factor out the common term {{{x+15}}}



{{{(x+15)^2}}} Condense the terms.



===============================================================



Answer:



So {{{x^2+30x+225}}} factors to {{{(x+15)^2}}}.



In other words, {{{x^2+30x+225=(x+15)^2}}}.



Note: you can check the answer by expanding {{{(x+15)^2}}} to get {{{x^2+30x+225}}} or by graphing the original expression and the answer (the two graphs should be identical).