Question 281667
I'm assuming that you want to factor.





Looking at the expression {{{x^2-x-12}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-1}}}, and the last term is {{{-12}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-12}}} to get {{{(1)(-12)=-12}}}.



Now the question is: what two whole numbers multiply to {{{-12}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-1}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-12}}} (the previous product).



Factors of {{{-12}}}:

1,2,3,4,6,12

-1,-2,-3,-4,-6,-12



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-12}}}.

1*(-12) = -12
2*(-6) = -12
3*(-4) = -12
(-1)*(12) = -12
(-2)*(6) = -12
(-3)*(4) = -12


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-1}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>1+(-12)=-11</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>2+(-6)=-4</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>-4</font></td><td  align="center"><font color=red>3+(-4)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-1+12=11</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-2+6=4</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-3+4=1</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{-4}}} add to {{{-1}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{-4}}} both multiply to {{{-12}}} <font size=4><b>and</b></font> add to {{{-1}}}



Now replace the middle term {{{-1x}}} with {{{3x-4x}}}. Remember, {{{3}}} and {{{-4}}} add to {{{-1}}}. So this shows us that {{{3x-4x=-1x}}}.



{{{x^2+highlight(3x-4x)-12}}} Replace the second term {{{-1x}}} with {{{3x-4x}}}.



{{{(x^2+3x)+(-4x-12)}}} Group the terms into two pairs.



{{{x(x+3)+(-4x-12)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+3)-4(x+3)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-4)(x+3)}}} Combine like terms. Or factor out the common term {{{x+3}}}



===============================================================



Answer:



So {{{x^2-x-12}}} factors to {{{(x-4)(x+3)}}}.



In other words, {{{x^2-x-12=(x-4)(x+3)}}}.



Note: you can check the answer by expanding {{{(x-4)(x+3)}}} to get {{{x^2-x-12}}} or by graphing the original expression and the answer (the two graphs should be identical).