Question 281644
{{{((b^2-a^2)/(a-b))(a/(a^2-ab))}}} Start with the given expression



{{{((-(a+b)(a-b))/(a-b))(a/(a^2-ab))}}} Factor the first numerator.



{{{((-(a+b)(a-b))/(a-b))(a/(a(a-b)))}}} Factor the second denominator.



{{{((-a(a+b)(a-b))/(a(a-b)(a-b)))}}} Combine the fractions.



{{{((-highlight(a)(a+b)highlight((a-b)))/(highlight(a)highlight((a-b))(a-b)))}}} Highlight the common terms.



{{{((-cross(a)(a+b)cross((a-b)))/(cross(a)cross((a-b))(a-b)))}}} Cancel out the common terms.



{{{(-(a+b))/(a-b)}}} Simplify



{{{(-a-b)/(a-b)}}} Distribute



So {{{((b^2-a^2)/(a-b))(a/(a^2-ab))}}} simplifies to {{{(-a-b)/(a-b)}}}



In other words, {{{((b^2-a^2)/(a-b))(a/(a^2-ab))=(-a-b)/(a-b)}}}