Question 281601
{{{(d/g^2)/(d^2/g^3)}}} Start with the given expression.



{{{(d/g^2)(g^3/d^2)}}} Multiply the first fraction by the reciprocal of the second.



{{{(dg^3)/(g^2d^2)}}} Combine the fractions.



{{{(d*g*g*g)/(g*g*d*d)}}} Factor.



{{{(highlight(d)*highlight(g*g)*g)/(highlight(g*g)*highlight(d)*d)}}} Highlight the common terms.



{{{(cross(d)*cross(g*g)*g)/(cross(g*g)*cross(d)*d)}}} Cancel out the common terms.



{{{g/d}}} Simplify.



So {{{(d/g^2)/(d^2/g^3)}}} simplifies to {{{g/d}}}



In other words, {{{(d/g^2)/(d^2/g^3)=g/d}}}