Question 281599


Looking at the expression {{{6x^2+x-12}}}, we can see that the first coefficient is {{{6}}}, the second coefficient is {{{1}}}, and the last term is {{{-12}}}.



Now multiply the first coefficient {{{6}}} by the last term {{{-12}}} to get {{{(6)(-12)=-72}}}.



Now the question is: what two whole numbers multiply to {{{-72}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{1}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-72}}} (the previous product).



Factors of {{{-72}}}:

1,2,3,4,6,8,9,12,18,24,36,72

-1,-2,-3,-4,-6,-8,-9,-12,-18,-24,-36,-72



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-72}}}.

1*(-72) = -72
2*(-36) = -72
3*(-24) = -72
4*(-18) = -72
6*(-12) = -72
8*(-9) = -72
(-1)*(72) = -72
(-2)*(36) = -72
(-3)*(24) = -72
(-4)*(18) = -72
(-6)*(12) = -72
(-8)*(9) = -72


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{1}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-72</font></td><td  align="center"><font color=black>1+(-72)=-71</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>2+(-36)=-34</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>3+(-24)=-21</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>4+(-18)=-14</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>6+(-12)=-6</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>8+(-9)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>72</font></td><td  align="center"><font color=black>-1+72=71</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>-2+36=34</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-3+24=21</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-4+18=14</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-6+12=6</font></td></tr><tr><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>9</font></td><td  align="center"><font color=red>-8+9=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-8}}} and {{{9}}} add to {{{1}}} (the middle coefficient).



So the two numbers {{{-8}}} and {{{9}}} both multiply to {{{-72}}} <font size=4><b>and</b></font> add to {{{1}}}



Now replace the middle term {{{1x}}} with {{{-8x+9x}}}. Remember, {{{-8}}} and {{{9}}} add to {{{1}}}. So this shows us that {{{-8x+9x=1x}}}.



{{{6x^2+highlight(-8x+9x)-12}}} Replace the second term {{{1x}}} with {{{-8x+9x}}}.



{{{(6x^2-8x)+(9x-12)}}} Group the terms into two pairs.



{{{2x(3x-4)+(9x-12)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(3x-4)+3(3x-4)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x+3)(3x-4)}}} Combine like terms. Or factor out the common term {{{3x-4}}}



===============================================================



Answer:



So {{{6x^2+x-12}}} factors to {{{(2x+3)(3x-4)}}}.



In other words, {{{6x^2+x-12=(2x+3)(3x-4)}}}. So the answer is A)



Note: you can check the answer by expanding {{{(2x+3)(3x-4)}}} to get {{{6x^2+x-12}}} or by graphing the original expression and the answer (the two graphs should be identical).