Question 278208
I'm assuming that you want to factor this.




Looking at the expression {{{v^2-11v-60}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-11}}}, and the last term is {{{-60}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-60}}} to get {{{(1)(-60)=-60}}}.



Now the question is: what two whole numbers multiply to {{{-60}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-11}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-60}}} (the previous product).



Factors of {{{-60}}}:

1,2,3,4,5,6,10,12,15,20,30,60

-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-60}}}.

1*(-60) = -60
2*(-30) = -60
3*(-20) = -60
4*(-15) = -60
5*(-12) = -60
6*(-10) = -60
(-1)*(60) = -60
(-2)*(30) = -60
(-3)*(20) = -60
(-4)*(15) = -60
(-5)*(12) = -60
(-6)*(10) = -60


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-11}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>1+(-60)=-59</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>2+(-30)=-28</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>3+(-20)=-17</font></td></tr><tr><td  align="center"><font color=red>4</font></td><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>4+(-15)=-11</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>5+(-12)=-7</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>6+(-10)=-4</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>-1+60=59</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-2+30=28</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-3+20=17</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-4+15=11</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-5+12=7</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-6+10=4</font></td></tr></table>



From the table, we can see that the two numbers {{{4}}} and {{{-15}}} add to {{{-11}}} (the middle coefficient).



So the two numbers {{{4}}} and {{{-15}}} both multiply to {{{-60}}} <font size=4><b>and</b></font> add to {{{-11}}}



Now replace the middle term {{{-11v}}} with {{{4v-15v}}}. Remember, {{{4}}} and {{{-15}}} add to {{{-11}}}. So this shows us that {{{4v-15v=-11v}}}.



{{{v^2+highlight(4v-15v)-60}}} Replace the second term {{{-11v}}} with {{{4v-15v}}}.



{{{(v^2+4v)+(-15v-60)}}} Group the terms into two pairs.



{{{v(v+4)+(-15v-60)}}} Factor out the GCF {{{v}}} from the first group.



{{{v(v+4)-15(v+4)}}} Factor out {{{15}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(v-15)(v+4)}}} Combine like terms. Or factor out the common term {{{v+4}}}



===============================================================



Answer:



So {{{v^2-11v-60}}} factors to {{{(v-15)(v+4)}}}.



In other words, {{{v^2-11v-60=(v-15)(v+4)}}}.



Note: you can check the answer by expanding {{{(v-15)(v+4)}}} to get {{{v^2-11v-60}}} or by graphing the original expression and the answer (the two graphs should be identical).