Question 276264
<font face="Garamond" size="+2">


Let *[tex \Large x] represent the "another" number.  Then the "one" number must be *[tex \Large 6x\ -\ 3].  The sum is 10, so:



*[tex \LARGE \ \ \ \ \ \ \ \ \ \ (6x\ -\ 3)\ + x\ =\ 10]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 7x\ =\ 13]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ =\ \frac{13}{7}]


is one of the numbers, and:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 6\left(\frac{13}{7}\right)\ -\ 3\ =\ \frac{78}{7}\ -\ \frac{21}{7}\ =\ \frac{57}{7}]


is the other one.


Check:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{57}{7}\ +\ \frac{13}{7}\ =\ \frac{70}{7}\ =\ 10]


John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>