Question 270745
<font face="Garamond" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ =\ ax^2\ +\ bx\ +\ c]


has exactly 1 *[tex \Large y]-intercept at (0, c) and either 0, 1, or 2 *[tex \Large x]-intercepts.


If *[tex \Large b^2\ -\ 4ac\ >\ 0], the quadratic has 2 *[tex \Large x]-intercepts at *[tex \Large \left(\frac{-b\ +\ \sqrt{b^2\ -\ 4ac}}{2a},\,0\right)] and *[tex \Large \left(\frac{-b\ -\ \sqrt{b^2\ -\ 4ac}}{2a},\,0\right)]


If *[tex \Large b^2\ -\ 4ac\ =\ 0], the quadratic has 1 *[tex \Large x]-intercept at *[tex \Large \left(\frac{-b}{2a},\,0\right)]


If *[tex \Large b^2\ -\ 4ac\ <\ 0], the quadratic has 0 *[tex \Large x]-intercepts.



John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>