Question 268982
This is an RTD problem. Here is a table based on the given information
direction . . . . . . . . .rate . . . . . . . . .. time . . . . . . . . .. distance
Paul (N) . . . . . . . . . . 64. . . . . . . . . . . t. . . . . . . . . . . . . 64t
Tim (S) . . . . . . . . . . .58. . . . . . . . . . .t - h. . . . . . . . . . .58t - 58h
distances . . . . . . . . . . . . . . . . . . . . .2t. . . . . . . . . . . . 982
We don't know when Tim left. We want them 982 miles apart but the distance are increasing, so we add to get
64t + 58t - 58h = 982
or
122t  - 58h = 982
solving for t, we get
t = (982+58h)/122
If h = 2, then t = 9
It would 9 hours after PAul left to be 982 miles apart.
It would be 7 hours after Tim left.