Question 265665
Let {{{a}}} = tens digit
Let {{{b}}} = units digit
The number is {{{10a + b}}}
With the digits reversed, 
the number is {{{10b + a}}}
given:
{{{a/b = 1/4}}}
{{{10a + b + 10b + a = 110}}}
-----------------------------
{{{a = (1/4)*b}}}
{{{(10/4)*b + b + 10b + (1/4)*b = 110}}}
{{{(11/4)*b + 11b = 110}}}
{{{11b + 44b = 440}}}
{{{55b = 440}}}
{{{b = 8}}}
and, since
{{{a/b = 1/4}}}
{{{a/8 = 1/4}}}
{{{a = 2}}}
The original number is 28
check:
{{{28 + 82 = 110}}}
{{{110 = 110}}}
OK