Question 261746
{{{(2x^3+x^2-3x)/(x^3-x^2)}}} Start with the given expression.



{{{(x(x-1)(2x+3))/(x^3-x^2)}}} Factor the numerator.



{{{(x(x-1)(2x+3))/(x^2(x-1))}}} Factor the denominator.



{{{(x(x-1)(2x+3))/(x*x(x-1))}}} Break up {{{x^2}}} to get {{{x*x}}}.



{{{(highlight(x)highlight((x-1))(2x+3))/(highlight(x)*x*highlight((x-1)))}}} Highlight the common terms.




{{{(cross(x)cross((x-1))(2x+3))/(cross(x)*x*cross((x-1)))}}} Cancel out the common terms.



{{{(2x+3)/x}}} Simplify



So {{{(2x^3+x^2-3x)/(x^3-x^2)}}} simplifies to {{{(2x+3)/x}}}. 



In other words, {{{(2x^3+x^2-3x)/(x^3-x^2)=(2x+3)/x}}}