Question 260945
here is the original problem:
{{{((2x+1) / (x^2-2x)) +((3-x) / (5x^2-20)) }}}
step 1 - factor the denominators to get
{{{((2x+1)/(x(x-2))) + ((3-x)/(5(x^2-4)))}}}
notice we have a difference of squares still, so we continue factoring as
{{{((2x+1)/(x(x-2))) + ((3-x)/(5(x-2)(x+2)))}}}
step 2 - the common denominator is 5x(x+2)(x-2). we change the numerators and get a common denominator as
{{{((2x+1)(5(x+2))/(x(x-2))) + (x(3-x)/(5(x-2)(x+2)))}}}
step 3 - expand the numerators to get
{{{((10x^2+25x+10)+ (3x-x^2))/(5x(x-2)(x+2)) }}}
step 4 - combine like terms to get
{{{(9x^2 + 28x + 10)/(5x(x-2)(x+2))}}}