Question 258696
Simplify first.
{{{4n^2 + 4n-3=(2n-1)(2n+3)}}}
{{{6n^2 -n - 15=(3n-5)(2n+3)}}}
{{{8n^2 +32n +30=(4n+6)(2n+5)}}}
{{{4n^2 +16n +15=(2n+3)(2n+5)}}} 

{{{(4n^2 + 4n-3)/(6n^2 -n - 15) =((2n-1)*cross((2n+3)))/((3n-5)*cross((2n+3)))}}}

{{{(8n^2 +32n +30)/(4n^2 +16n +15)=((4n+6)*cross((2n+5)))/((2n+3)*cross((2n+5)))}}} 
{{{(8n^2 +32n +30)/(4n^2 +16n +15)=(2*cross((2n+3))/cross((2n+3)))}}} 
{{{(8n^2 +32n +30)/(4n^2 +16n +15)=2}}} 
and finally

{{{((4n^2 + 4n-3)/(6n^2 -n - 15))* ((8n^2 +32n +30)/(4n^2 +16n +15))=((2n-1)/(3n-5))*2}}}
{{{((4n^2 + 4n-3)/(6n^2 -n - 15))* ((8n^2 +32n +30)/(4n^2 +16n +15))=2(2n-1)/(3n-5)}}}