Question 257415
This is an RTD problem. Here is a table base on given information:
motorist . . . . . . . . .rate . . . . . . . . . .time . . . . . . . . . .distance
 . . . . . . . . . . . . . . .. R1 . . . . . . . . . . . .2 . . . . . . . . . .. . 2R1
 . . . . . . . . . . . . . . . .R2 . . . . . . . . . . . .3 . . . . . . . . .. .  .3R2
 . . . . . . . . . . . . . . . R2 . . . . . . . . .. . . . 1 . . . . . . . . .. . .1R2
 . . . . . .. .  . . . . . . . . ..  .. . . . . . . . . . .6 . .  . . . .. . . . .  . .2444
We see that
(i) {{{2R1 + 4R2  = 2444}}}
or dividing by 2, we get
(ii) {{{R1 + 2R2 = 1222}}}
and that the average rate is
avgR = 2444/6 = 407.33
This means that 
(iii) {{{(R1+R2)/2 = 407.33}}}
or
(iv) {{{R1 + R2 = 814.66}}}
substituting (iv) into (ii) we get
(v) {{{R1 + R2 + R2 = 1222}}}
(vii) {{{814.66 + R2 = 1222}}}
solving for R2, we get
{{{R2 = 407.33}}}
This makes R1
{{{R1 = 407.33}}}
--
The rates appear to be the same.